
A Comparative Analysis of Metadata Tools
for use on Unknown Operational Datasets

Leo–Ra Schwieder Juneblad

Leo–Ra Schwieder Juneblad
Spring 2024
Degree Project in Computing Science and Engineering, 30 credits
Supervisor: Alexandre Bartel
External Supervisor: Torgny Holmberg
External Partner: Ericsson
Examiner: Henrik Björklund
Master of Science Programme in Computing Science and Engineering, 300 credits



Abstract

When working with large datasets it is important that the right tools and
methods are selected in order to effectively, it is important that the right
tools and methods are selected in order to effectively analyze the data.
This thesis presents a comparative evaluation of data management tools
in the categories of validation, profiling, and feature extraction. The
tools, Pandera, Ydata Profiling, SweetViz, and Tsfel, were selected and
integrated into a data processing system for the WARA–Ops portal in
order to validate, profile, and analyze new operational datasets uploaded
to the portal. Finally, the system extracts statistical information from the
dataset and uses a machine learning classification algorithm to apply a
general label to the data based on the extracted information.



Acknowledgements

I want to extend my thanks to Alexandre Bartel, my supervisor, who provided discussion
and feedback on this project. I also want to thank my external supervisor Torgny Holmberg,
and the team at Ericsson Research, who gave me guidance and provided the inspiration and
help I needed throughout the entire project. Finally, I want to thank Eva, Paul, and Viggo
for giving me the moral support I needed to finish this thesis.



Contents

1 Introduction 1

2 Related Work 3

3 Background 4

3.1 Big Data 4

3.2 Metadata 4

3.3 Data Mining 5

3.4 Time Series Data 5

3.4.1 Time Series Motifs 5

3.5 Summarizing Data 6

3.6 Correlation Analysis 6

3.7 Data Clustering 6

3.8 Tools 7

3.8.1 Pandas 7

3.8.2 SciKit–Learn 7

3.9 Tools for Evaluation 7

3.9.1 Validation 8

3.9.2 Data Profiling 9

3.9.3 Feature Extraction 10

4 Solution Design 12

4.1 Selecting Tools 12

4.1.1 Initial Evaluation 12

4.1.2 Secondary Evaluation 13

4.2 Pipeline Design 14

4.3 Metrics for Analysis 15

4.3.1 Data Summary 15

4.3.2 Underlying Patterns 15



4.4 Evaluation of Completed System 16

5 Implementation 17

5.1 Tool Evaluation 17

5.1.1 Data Validation 17

5.1.2 Data Profiling 20

5.1.3 Feature Extraction 21

5.2 Building the Pipeline 21

5.2.1 Pipeline Stage One 22

5.2.2 Pipeline Stage Two 22

5.2.3 Pipeline Stage Three 22

6 Results 25

6.1 Evaluation of Validation Tools 25

6.2 Data Profiling Tools 28

6.3 Feature Extraction Tools 32

6.4 System Evaluation 34

7 Discussion 36

7.1 Designing the Data Processing System 36

7.2 Results of Tool Evaluations 37

7.3 System Evaluation 38

8 Conclusion 40

8.1 Reflection 40

8.2 Future Work 41

References 42



1(43)

1 Introduction

As the amount of digital systems in the world grows, the amount of data generated grows as
well. For a modern company to effectively manage its operations, it is important to manage
the data that the operations generate. These types of large datasets are often referred to
as big data, meaning datasets that are too large to process with standard data processing
methods. Another aspect of big data that is important to consider is the velocity of the data,
that is the speed at which data is generated. It means that any modern big data processing
methods must be able to handle large amounts of data at a fast enough rate so as to not
become overwhelmed.

When operating on large datasets it is important that data is both machine and human read-
able. Because of the amount of data it is impossible for processing to be done manually
by a human, therefore it is important that the data be machine readable. On the other hand
any results produced by machines should be verified by humans, meaning it is best for the
data to be understandable for humans as well. The primary way of doing this is by adding
metadata.

Metadata is most commonly defined as “data about data”. It commonly contains informa-
tion such as descriptions or keywords that describe the contents and structure of the data.
However, it can also consist of statistical and summarizing information about a dataset.
Metadata can be created automatically or manually. Automatic generation tends to give
more rudimentary metadata compared to doing it manually. It can give information such
as the time the data was created and who created it. On the other hand, manual metadata
creation can be much more detailed but is much more time–consuming. If a user wishes
to host their data on a certain platform but they are required to create metadata first, it may
cause them to turn to a different hosting service where such tasks are outsourced. The chal-
lenge, therefore, is creating high–quality, statistical metadata with as little user interaction
as possible. This comes down to choosing the correct tools for the job.

This thesis investigates various data processing, statistical metadata creation, and data vi-
sualization tools. The focus is on their ability to accomplish tasks with minimal user in-
volvement, particularly in identifying and presenting intriguing sections of large operational
datasets. This approach involves a comparative evaluation and implementation of tools for
metadata creation and data visualization, with the outcome of a bespoke system for metadata
generation. This will be done together with Ericsson research, and the final result will be
implemented into the WARA–Ops web portal. WARA–Ops is a research project that seeks
to develop new methods for big data management. The WARA–Ops portal is a web–based
interface that provides access to large operational datasets.



2(43)

Research Question

In order to evaluate data processing tools for use on a modern operational database, this
thesis aims to answer the following question, which is split into three aims, each with its
own objectives.

What are the best methods to automatically extract and visualize statistical metadata
from large unexplored datasets?

Aims:

Aim 1 Perform a literature analysis and evaluation of currently existing tools.

• Identify appropriate metrics for analyzing the effectiveness of tools.

• Literature study to identify, categorize, and rank existing tools.

Aim 2 Design a data processing system to automatically extract and display metadata from
an unknown dataset.

• Identify important statistics of a large dataset to extract and visualize in order to
analyze the data.

• Identify the most appropriate tools for the system using previously identified
metrics and rankings.

• Construct a data processing system using the proposed design and selected tools.

Aim 3 Validate the data processing system against the existing tools.

• Evaluate the data processing system against previously identified metrics.

• Comparatively evaluate the system against previously analyzed tools to deter-
mine what value it provides.



3(43)

2 Related Work

Metadata extraction and generation has been a popular research topic for many years and
has become even more relevant with the rapid spread of big data. A lot of research has been
done on generating and extracting metadata from large and small datasets. Such as [9],
from 2004, that comparatively analyses tools for extracting website metadata. However,
most research on the automatic extraction of metadata is relegated to specific fields where
specific types of metadata creation are required.

In [20], different tools for automatic metadata generation are evaluated in the context of the
needs of a library. They find many interesting points of discussion on automatically gener-
ating or extracting metadata using different tools. However, they are limited to discussing
only from the perspective of the library community. When it comes to more statistical
metadata, there is less common research.

Both [14] and [28] analyze automatic data visualization tools for selecting appropriate vi-
sualizations of data statistics. Both present valuable and effective tools that facilitate quick
visualization for exploratory data analysis. Further, [16] provides an evaluation of data
visualization tools for analyzing data from space sensors. [25] evaluates multiple data vi-
sualization tools for use in analyzing biological data. While this research presents effective
tools for automatic data visualization, it is still done with respect to the specific domain the
tools are used within and not an entirely general setting.



4(43)

3 Background

Statistical metadata generation and data analysis is a complicated topic that covers a lot
of ground. Therefore, it is important to define the scope of this thesis and lay down the
groundwork for understanding the results presented.

3.1 Big Data

Oracle describes big data in [18] as large amounts of complex data generated quickly. Man-
aging big data today is more important than ever, especially in large digital systems where
daily operations can generate massive amounts of data. A more rigorous definition of big
data is the three Vs: volume, velocity, and variety. Volume implies a large amount of data
generated. Velocity means that the data is being generated at a high rate of speed, and va-
riety describes the high variance in what type of data is being generated. Further Vs have
been added, such as value and veracity, but the first three are the main components that
define big data. To gain any valuable information at all from big datasets, performing some
form of big data analysis is necessary. Big data analysis or big data analytics simply means
using tools to summarize and analyze very large datasets.

3.2 Metadata

Metadata is most simply defined as ”data about data”. For humans and machines to be able
to handle the enormous amounts of data they come across every day, metadata is a vital
resource. There are many types of metadata, categorizing different types of information for
different purposes [24, p. 6,7]. For example, technical metadata describes technical aspects
of some data, such as file size and type. Structural metadata, on the other hand, describes
how data is structured. It describes information such as page numbers or the sequence order
in the data. For this thesis, however, generating descriptive metadata is the main focus.
Descriptive metadata describes the information needed to understand the data, such as the
name of the data, where it came from, or statistical information on the data. While much
of metadata creation today is created to enable machine readings of the data, good, high–
quality, human–readable metadata is important for understanding the large amounts of data
being generated.

While metadata is generated all the time, for almost every piece of data created, it can only
be useful if it accurately represents the data it is derived from. So–called high–quality meta-
data. High–quality metadata does not have a strict definition and so can be hard to qualify.
However, one generally agreed upon important aspect of creating high–quality metadata is
taking into consideration the context within which it is created. Xavier Ochoa and Erik Du-
val in [17] evaluate metadata quality measurements for digital learning repositories. They



5(43)

state that “The tasks metadata should enable in a digital repository are to help the user to
find, identify, select and obtain resources. The quality of the metadata will be directly pro-
portional to how much it facilitates those tasks.” They make it clear that the quality of the
metadata is evaluated on how useful it is to the context in which it was created. For descrip-
tive metadata in an analytical context, high–quality metadata should provide an accurate
view of the data in a smaller size that can be easily analyzed.

3.3 Data Mining

Data mining is the practice of using computers to semi–automatically search through large
datasets, as described by Gillis, Stedman, and Hughes in [6]. Data mining primarily aims
to find hidden patterns and valuable information that can be extracted from large, difficult–
to–explore data. One key aspect of data mining is that information can be extracted from
unknown or unexplored data. That is data that the person or system performing the data
mining is not immediately familiar with.

3.4 Time Series Data

As described in [11], a time series dataset is a sequence of events recorded over time. Thus, a
time series entry usually contains the resulting values of the event paired with a timestamp of
when those values were recorded. An operational dataset is a record of systems operations,
most often over some timespan, and therefore, it is often stored as a time series. Time series
data can also show certain unique correlations and patterns that are not present in a normal
dataset.

In contrast to time series analysis, concerned with predicting future events given a series or
analyzing past events of a known series. The objective of this thesis is to create a generalized
system that extracts analytical information and presents it to a person who can then perform
their own analysis.

3.4.1 Time Series Motifs

A somewhat new aspect of time series analysis is time series motif detection. In [15], Mueen
et al. describe a time series motif as a sub–sequence of a time series repeated one or more
times in the series. Depending on what the data represents, a motif can provide valuable
information by showing time–based, repeating patterns in the data.

Finding time series motifs entails repeatedly comparing subsections of a series. This can
be a very computationally intensive process for large time series. A method called the
matrix profile has been developed to improve it. Calculating the matrix profile for a time
series entails calculating the distance between a subsequence and the rest of the data using a
sliding window. This is done for all subsequences in the series, and the shortest distance for
each subsequence is recorded. The shortest distances are then compiled in a vector called
the matrix profile. By observing the lowest values in the matrix profile, one can see the
subsequences that are most alike.



6(43)

3.5 Summarizing Data

Data summarization is the process of identifying key features in a dataset to provide an
overview of it, as explained in [31]. It is a key step in exploratory data analysis (EDA),
as it gives a more digestible view of a dataset that can serve as a good basis for further
exploration and analysis. One of the most used statistics for summarizing data is central
tendency. Central tendency refers to the center of a dataset. It is often calculated using the
mean or average. Other useful summarizing statistics are the dispersion and spread of the
data. This can include variables such as variance, skewness, and kurtosis to determine how
spread the data is and its general distribution.

3.6 Correlation Analysis

N. Gogtay and U. Tatse [8] describe correlation or correlation analysis as a way of defining
how much two variables affect each other. There are different forms of correlation analysis.
However, a popular one, and the one used in this thesis, is Pearson correlation. Pearson cor-
relation distills the linear relationship between variables down to a number between -1 and
1, where -1 indicates a perfect negative correlation and 1 indicates a perfect positive corre-
lation. A positive correlation means that the variables increase together, while a negative
correlation means that one variable increases while the other decreases.

3.7 Data Clustering

As Aghabozorgi, Shirkhorshidi, and Wah describe in [1], clustering is a type of data analysis
that attempts to group data points together into clusters, usually without in–depth knowl-
edge of any preexisting categories. It is an unsupervised learning technique, meaning no
verification of results takes place, and no outputs need to be known. Clustering algorithms
look at a data point and compare it to other data points in the set. Points that are determined
to be similar are placed in the same group while points that are less similar are placed into
different groups. Two point’s similarity are defined by the heuristic used by the algorithm.

Clustering can be very useful in the analysis of time series data as it can provide insights
into underlying patterns and groupings that the data presents over time. However, in order to
properly analyze a dataset through clustering, a clustering algorithm must be chosen. Two
popular types of clustering algorithms are hierarchical and partitioning clustering. Hierar-
chical clustering can be done agglomeratively or divisively [1]. Agglomerative clustering
is done by placing every data point into its own cluster and then merging the closest pair
of clusters. This is then repeated until only one cluster remains, or a suitable number of
clusters is reached. Divisive hierarchical clustering is the opposite. All points start as one
cluster and are divided until they are all in separate clusters, or a suitable number of clusters
is reached. Partitioning clustering, on the other hand, works by placing a set of data points
into a set number of clusters such that each cluster contains at least one data point.

One of the most popular partitioning clustering algorithms is k–means clustering. It works
by grouping points around k cluster centers [12]. It begins by randomly selecting k points
that serve as cluster centers. It then calculates the distance from each data point to the cluster



7(43)

centers and groups each data point to the closest center. It continues by recalculating the
centers to be the actual centers of each cluster. It then repeats by assigning each point to its
nearest cluster center and recalculating the centers. This is done until the centers converge,
stop changing, or a set number of iterations have passed.

One problem with k–means clustering is choosing an appropriate value for k. There exist
a few methods for this, such as the elbow method, and the silhouette score. The silhouette
score is a value between −1 and 1 and measures how similar a point is to its own cluster
compared to other clusters [10]. A high silhouette score can indicate well defined clusters.
By testing different k values and recording the silhouette score one can find a potentially
optimal k value by selecting the one with the highest silhouette score.

3.8 Tools

The following tools are evaluated for use on datasets in the WARA–Ops portal.

3.8.1 Pandas

Pandas is an open source data analysis tool for Python [19]. The primary feature it pro-
vides to this project is the dataframe object. A dataframe is a two dimensional array–like
object that contains data where each column may contain a different type. Visualizing a
dataframe shows it is similar to a spreadsheet. All the datasets in the WARA–Ops portal
are in dataframe format, which is good as Pandas provides a large number of features for
analyzing dataframes.

3.8.2 SciKit–Learn

Scikit–learn (Sklearn) is a popular, open–source machine learning library for Python. It
provides a multitude of tools for constructing machine learning models, as well as datamin-
ing and data analysis. These include tools for classification, clustering, and dimensionality
reduction.

3.9 Tools for Evaluation

There are many challenges to generating high quality metadata, and in order to do it effec-
tively, the right tools are required. Without domain knowledge, some data validation and
exploration is required, meaning no single tool can serve as a complete solution. In the
case of generating metadata for unknown datasets multiple tools are needed for different
purposes. The following sections divide the tools into validation, profiling, and feature ex-
traction. A restriction placed on the tools used in the project is that they be compatible with
Python as that is the language used in the WARA–Ops portal.



8(43)

3.9.1 Validation

In data management, validation can entail a lot of things, but mainly it is about defining
how the data is expected to look. This includes the shape of the dataset and the datatypes
it consists of. Validation is important in many different cases, specifically for the purpose
of this thesis it limits the need to guess what a dataset should look like. By having a user
provide the shape of a dataset it is much easier to process effectively.

Pydantic

Pydantic is an open source, Python–based data validation tool [21]. It is focused on pro-
viding type safety in Python code by allowing users to add data validation points in their
programs. It functions by defining a schema class that contains the expected names and
datatypes of the data and then passing the data to the schema class. If the validation fails
an error is raised specifying where the data does not match the schema. Data can be passed
through the schema one piece at a time or put together as a dictionary. Pydantic also
provides features for defining expected values, and so called data coercion, meaning if a
datatype of a column does not match the schema, Pydantic can try to convert the column to
that datatype. Beyond that, Pydantic is a widely used tool and has a large pool of resources
available to potential users.

Great Expectations

Great Expectations is a data management tool for validating and documenting large amounts
of data. It applies the philosophy of unit testing to data management by letting user effi-
ciently build comprehensive validation suites for their data [5]. It specifically facilitates the
processing of live data by allowing the creation of validation checkpoints. The checkpoints
can be connected to data sources and when new data is produced by the source, it can be
automatically passed through the checkpoint that can validate it. The focus of the validation
is slightly different from most of the other tools mentioned in this report. Great Expecta-
tions lets users place expectations on the data that verify its characteristics. There is a large
number of predefined expectations and it is possible for a user to create their own as well.
With expectations, the focus is on verifying specific characteristics of the data instead of the
focus being on verifying the datatypes, as with Pydantic, for example. The design of Great
Expectations makes it ideal for data pipelines that handle large amounts of data, as long as
the expected shape of the data is known beforehand.

TypedFrame

TypedFrame is an open source data validation tool for Pandas dataframes developed by
Alexander Reshytko [23]. It is different from all other validation tools mentioned in this
report as it only does type validation. It is built as a wrapper for the Pandas dataframe. Like
Pydantic, the user defines a schema class that contains the expected columns of a dataframe
as well as the expected type of each column. The dataframe can then be passed to the
schema class, and any data not conforming to the schema raises an error. The only auxil-
iary feature it provides is for converting nonconforming columns to the expected datatype.
TypedFrame is designed so that functions can take a schema class as input, thus providing a



9(43)

clear template for how the input data should look. Thus the focus is on providing clear data
entry for programmers.

Marshmallow

Marshmallow is a data validation, serialization, and deserialization tool developed and
maintained by Steven Loria, Jérôme Lafrèchoux, and Jared Deckard [13]. The validation
works by creating a schema class that defines the expected names and datatypes of each col-
umn of the validated data. Extra features are provided to define expected values, and value
ranges as well as full validation of nested datatypes. Beyond validation, Marshmallows
main features are data serialization and deserialization. Validation schemas can be applied
easily before a data object is serialized or deserialized. This makes it very good when the
integrity of data must be verified before it is stored or sent to some other system.

Pandera

Pandera is an in–depth data validation tool for use on dataframes in Python [27]. It supports
validation for different types of dataframes. However, only Pandas dataframes are relevant
to this project. Just as with the previously mentioned tools, it lets users define a validation
schema class that contains the expected data columns and their respective datatypes. It
is somewhat similar to Pydantic, both in function and focus, as both tools aim to create
clearer typing for Python data processing. One of the biggest differences between them
is the features they provide beyond type validation. Pandera gives a range of options for
validating data. It supports deeper validation such as expected values and conversion of
nonconforming datatypes. But it also provides function decorators so validation can easily
be integrated into data processing pipelines. One of its most distinct features is the fact that
it lets users define validation schemas using the syntax of Pydantic. This can be very useful
depending on if users are more comfortable with the Pydantic syntax.

JSON Schema

JSON Schema is a format specification for validating JSON files described in [26]. This the-
sis discusses the Python implementation of the specification, developed by Julian Berman
[3]. A JSON schema specifies how a JSON document should be formatted, this includes the
expected names and datatypes of fields. A JSON object and the schema can then be passed
to the validator and either pass the validation if it aligns with the schema or, if it does not,
a validation error is raised. It is quite in–depth as it provides many more features for val-
idation, such as optional fields, value ranges and expected values of fields. Descriptions
can also be added to properties in the schema to describe the fields of the JSON document.
Because it uses a JSON format is very practical for creating readable definitions for JSON
data.

3.9.2 Data Profiling

Data profiling is a step in data analysis where a rough picture of the data is painted. It can
include things such as amounts of missing values, sections of constant values, correlations,



10(43)

etc. The following are tools for automatic data profiling.

Ydata Profiling

Ydata Profiling is a data analysis tool for the initial stages of data processing [29]. It auto-
matically generates a profile of the data, containing statistics and categories in the dataset, in
order to ascertain the quality of the data before it can be processed further. It also provides
a special profiling mode for analyzing time series data, which is relevant to this report. This
mode adds deeper analysis of the timestamp values and a few new labels that are time series
specific.

The tool is designed to facilitate easy exploratory data analysis. It is a good out–of–the–box
solution as it compiles the stats it calculates into a full report on the data presented in an
HTML document with included graphs and charts. And if a dataset is very large, it allows
certain computations to be left out of the report to lower resource consumption. Because of
the visual means in which the profile is presented, the results from Ydata Profiling are both
easily understood and informative.

Sweetviz

Sweetviz is a data profiling tool developed by Francois Bertrand [4]. It functions similarly
to Ydata Profiling by analyzing a dataset and visualizing the results in a report. Although
some of the content of the analysis differs from that in Ydata Profiling. Sweetviz also
provides some features related to comparing two datasets or comparing different columns
in a single dataset. Just as with Ydata Profiling, it is a good out–of–the–box solution for
EDA.

Dython

Dython is a small, lightweight data analysis tool developed by Shaked Zychlinski [30].
While it is not specifically focused on data profiling, it still provides a good interface for
generating statistical data on a dataset. The main feature of Dython is the association graph
that is very easy to generate for a dataset to see the extent to which the numerical variables
in the dataset are associated. As stated by Zychlinski, it is focused on ease of use and so
efficiency was deprioritized. So it may be less suitable for use on large datasets.

3.9.3 Feature Extraction

Feature extraction tools analyze a dataset and pick out predetermined variables, called fea-
tures, that may be valuable. Many of these tools are designed to extract features relevant to
training machine learning models. However, some of these features can still be useful for
understanding the dataset.



11(43)

Tsfresh

Tsfresh is a time series feature extraction tool [7]. It calculates a large number of charac-
teristics or features of a dataset. The intended purpose of the tool is to extract features that
may be relevant to training or running the data through machine learning models. Because
of this, it tries to extract a lot of features but also provides methods for filtering out values
that are deemed insignificant by a significance test. Because it is designed specifically for
time series data it requires the timestamp variable when it is run. Tsfresh also requires the
variable that identifies the time series. Should a dataset contain multiple time series, the fea-
tures for each one are calculated separately. This provides more precise features, however,
its usefulness depends on the information available about the dataset.

Tsfel

Tsfel, or Time series feature extraction library, is exactly that, a Python–based tool for
time series feature extraction [22]. It functions very similarly to Tsfresh, it even calculates
very similar features. However, some features differ between the tools. Tsfel provides a
configuration variable that can be modified to extract certain types of features making it very
easy to customize what is extracted. Tsfel also provides the option of leaving out the time
series id variable, meaning that even if the dataset contains multiple time series, features are
calculated assuming they are one series. This is useful when analyzing unknown datasets,
but provides less clarity in the features.

Stumpy

Stumpy is a Python–based time series analysis tool [2]. Specifically Stumpy provides al-
gorithms for calculating the matrix profile for a given time series. Using the matrix profile
features such as motifs or outliers can be extracted from the dataset. One of the main goals
of Stumpy is performance, it is designed to efficiently compute the matrix profile. Calculat-
ing the matrix profile does require some domain knowledge, so it may be less effective on
unknown datasets.



12(43)

4 Solution Design

In order to answer the research question proposed in Section 1, the tools in Section 3.9 must
be examined and evaluated. Then, a system is to be designed together with Ericsson, where
the tools are implemented and tested. This also provides some evaluation metrics for the
tools as they must conform to the needs of the system. When a user uploads a dataset to the
portal, it enters the system, which functions as a pipeline and extracts potentially relevant
metadata and statistical data, and presents any interesting features to the user. Before testing,
the tools are ranked against some general metrics to determine how easy they are to work
with and what value they provide. Once ranked, they are tested against some general metrics
derived from the review in Section 3, and should the design of the pipeline create any
specific metrics, the tools are tested against them as well in order to find which are most
suitable for use, which can be discarded, and if any further development of custom tooling
should be done.

In order to begin selecting tools it is necessary to answer the first aim of the research ques-
tion presented in Section 1. Of the tools that are evaluated favorably the best ones of each
category are selected for implementation into the pipeline. To answer the second aim, the
pipeline itself is designed, and the statistical metrics explained in Section 3 are examined
to determine which are most relevant to the final stage of the pipeline. Finally, to achieve
the third aim, the pipeline itself is evaluated against the same general metrics as the tools,
to determine its usefulness as a data processing system.

4.1 Selecting Tools

Selecting the appropriate tools for the pipeline is the first step in its construction. To do
this, the first step is to rank the tools using common metrics. They are then evaluated on the
results of the testing, and the highest ranked tools are selected. Because the pipeline is split
into three distinct stages, the tools are split into three categories and the rankings are done
within each category. However the evaluation metrics are very similar within each category.

4.1.1 Initial Evaluation

The initial ranking must be done first as provides insights into what the tools can do and
how they fit into a general metadata management process disconnected from the specific
context of the pipeline. Once the initial ranking is done, each tool is tested and ranked again
based on the initial ranking and the results of the tests. While the tool’s second ranking
determines the selected tools, ultimately, the tools are only restricted by the requirements of
the pipeline, meaning the highest–ranked tools may not always be the ones chosen.

The initial ranking is done per category, as they are in Section 3.9. General metrics when



13(43)

ranking all tools are the community around the tool, as well as the advertised focus of
each tool. Some special metrics are used in each category. In the validation category, the
types of available validation are considered. In the data profiling category, the information
extracted is considered. For the feature extraction category, the customizability of the tool,
is considered.

4.1.2 Secondary Evaluation

As explained in Section 3.9, there are several practical metrics for determining a good meta-
data management tool. However, because the pipeline is constructed of multiple, more
specialized tools, the tools are not all similar to many of the metadata management tools
evaluated there. Several relevant metrics exist while independent of tool type. There are
specifically four main metrics that are examined for all tools:

• Accessibility

• Running time

• Time complexity

• Flexibility

Accessibility encompasses a few features, and it is important as tools with good acces-
sibility interact with them quickly and effectively. Accessibility mainly refers to a small
learning curve for new users. It is evaluated by analyzing the interface of the tools. Specifi-
cally, this means the tools syntax and potential input requirements and output information.
In order to be useful the system must be understandable. Users are not necessarily very
familiar with Python or any programming language. Thus, any tools used must be readable
and understandable to someone not familiar with the interface. Users may be somewhat
unfamiliar with the data they are processing as well which means the tools must provide a
comprehensive view of what they do and how in order to facilitate exploration of the data.

Running time is simply the time it takes to run the tools on some input data. It can be an
important aspect of a tool depending on its use case. If a fast output is required in a system,
faster tools are required. This is evaluated by running the tools with some input data and
recording the time to process it.

Time complexity is an important metric as these tools must be able to handle very large
amounts of data. A tool with high time complexity would drastically slow down any system
in which it is integrated. Time complexity can be evaluated by running the tools with in-
creasingly large datasets and recording the running time. The results can then be analyzed
to determine matching curves and thus find the complexity.

Finally, flexibility is important because it is not unusual for data to change, and thus, any
metadata schemas must adapt to the new data format. The tools must allow for changes to
the input in order to be used effectively. Flexibility is evaluated by manually analyzing the
interfaces of the tools to determine when and where the tools allow the expected input data
to change.

Some restrictions are also placed on the tools by the pipeline design. Mainly, the tools must
be robust so as to be able to handle missing values or values of the wrong type. This is



14(43)

related to the flexibility aspect of the metrics specified. Because the purpose of the pipeline
is to process any operational dataset that users wish to upload to it, it is expected that data
formats for the datasets are not set in stone. The format of the datasets may change, both
in small and large ways, such as a column changing types from integer to a floating point
number, to several new columns being added and several old ones being removed. This
means that the tools used must be at least somewhat changeable to accommodate new data.

Running time is not a critical metric for the pipeline. It is expected that processing the data
in the pipeline takes some time, so speed is not a necessary focus for the tools. However,
it still provides a good foundational metric for ranking the effectiveness of the tools. Time
complexity is also a concern. As stated, the datasets are very large, so tools must not eat up
time and resources whenever they are run.

4.2 Pipeline Design

The system for data analysis, a collaborative effort between the engineers at Ericsson Re-
search and me, is structured as a pipeline that takes a Pandas dataframe as input. When
a user uploads a new dataset to the portal, the dataset enters the pipeline, undergoes pro-
cessing, and the results are presented to the user. The design of the pipeline prioritizes
explainability, ensuring that users can comprehend each decision made.

The pipeline consists of three stages. The first stage validates the dataset and lets the user
modify any assumptions the system makes. If a column is not of the expected type, the
user has the ability to change it, and the pipeline attempts to convert the column to the
appropriate type. Apart from the shape of the data and general datatypes of each column of
the dataframe, it does not extract any in–depth statistical metadata from the dataset.

The second stage is more in–depth and provides more information about the data. The main
purpose of the second stage is to build a general dataset profile. It should include simple
statistical information on the data, such as correlation charts, missing values, and means and
averages of numerical columns, as well as common values of categorical columns. While
this is stage two of the pipeline, it must not necessarily finish before stage three as both
stages extract independent information that is presented to the user when the data has been
processed.

Finally, stage three provides more in–depth information on the dataset. This stage cleans
the data and extracts more complex features such as autocorrelation, outliers, and clusters.
Some of the features extracted are then used to ascribe labels to the dataset. These labels
include information such as whether the dataset is scattered or tight, or strongly or weakly
correlated. Just as with stage two, the focus is on extracting valuable information, whereas
speed and memory usage are a lower priority. A high level overview of the pipeline can be
seen in Figure 1

As stated, the main requirement of the pipeline is explainability. It must also be robust to
ingest and process any file that a user uploads, provided it is a time series in a dataframe
format. The user must be given an explanation of how every feature was extracted and why.
This must also be true if the pipeline fails. If a problem occurs, the user must know why.

In order to properly analyze the datasets, methods such as dimensionality reduction and
clustering are used. All steps must also be presented to future users. This means the third



15(43)

Figure 1: Overview of pipeline

step of the pipeline should be transparent but robust enough that users don’t need to be an
expert in data science in order to effectively use it.

The features calculated in the third step of the pipeline are used to train a classification
model to label the dataset. Implementing such a model requires the extraction of informa-
tion that can contribute to classifying the data. Gathering the classification metrics before-
hand is important, as the description must be transparent enough that the user can understand
what it is based on. Training such a model also requires data to train it on. Creating training
data entails extracting the selected statistical features from a variety of datasets, in order to
get a comprehensive spread of values for different types of datasets. The training data may
be extracted either from datasets that exist in the portal or be synthetic.

4.3 Metrics for Analysis

The ultimate goal of the pipeline is to classify the data depending on the metrics extracted,
but before that, it must be decided which analytical metrics should be extracted to contribute
to the classification.

4.3.1 Data Summary

To begin summarizing a dataset, as described in Section 3.5, the size and shape provide
a good starting point. However most users may be at least somewhat familiar with this
information. So a good way to provide a better view of a dataset is to find the center. This
can be done using the mean or median of the data. Then finding the spread of the data
provides a clearer picture of the form of the data. These metrics give a broad overview of
the shape of the data. However, more features can be added, such as skewness and kurtosis,
to give even further insight into the distribution of the data. In the third stage of the pipeline,
the variance of the dataset is calculated as a representation of the spread and used to label
the dataset.

4.3.2 Underlying Patterns

Because the datasets that pass through the pipeline are all time series, it is assumed that some
underlying patterns may be present in the data over time. These can be analyzed through
time series motifs as explained in Section 3.4.1. Autocorrelation of variables in the dataset
can also help with finding repeating patterns in the data. Finally, groupings may be present
in the data that may be visualized and discovered using clustering algorithms discussed in
Section 3.7. As there is a high chance that the data is high dimensional, some reduction must



16(43)

be done in order to visualize any potential clusters. This is done using Principal Component
Analysis (PCA), and t–distributed stochastic neighbor embedding (tSNE). PCA provides
dimensionality reduction while keeping as much variance as possible from the original data,
and tSNE is used to visualize the data in two and three dimensions.

Just as with the data summary, some of these metrics are fed to a classification model to
produce a label for the dataset describing the spread and groupings in a simple manner. All
of these metrics are also visualized and presented to the user as they are.

4.4 Evaluation of Completed System

Once the data processing pipeline is completed it is tested against the same general metrics
as the individual tools were. That is: accessibility, running time, time complexity, and
flexibility. Running time and time complexity are tested in the same manner as the tools.
By running the system on different datasets, and recording the timings. However, the fact
that the system incorporates multiple tools is considered as that makes it slower than any
individual tool.

Accessibility and flexibility are tested slightly differently from the other tools. Because the
pipeline is made up of multiple different tools it is only as flexible as the least flexible tool.
Any part of the pipeline not made up of premade tools is tested to see how well it can adapt
to new data. Accessibility is evaluated by analyzing the outputs from the pipeline to see how
well it explains any decisions taken regarding the data. Using these metrics the pipeline as
a tool is evaluated.



17(43)

5 Implementation

The first step in implementing the system, detailed in Section 4, was evaluating the tools that
were gathered. Once tools had been evaluated and selected, the pipeline was constructed,
and the tools were integrated into the system.

5.1 Tool Evaluation

As stated previously, the tools were first ranked according to the features collected in Sec-
tion 3.9. They were then tested and evaluated on the metrics described in Section 4. Finally,
the best–evaluated tools in each category were chosen for implementation into the pipeline.

The initial evaluation of all the tools was done using three metrics: the community around
the tool, the features provided beyond type checking, and the stated aim of the tool. The
tool’s aim is the primary metric for the first ranking. The community and features are
valuable but less important than what the tool’s main purpose is.

5.1.1 Data Validation

The secondary evaluation was done on the four metrics described in Section 4.1.2: run-
ning time, time complexity, accessibility, and flexibility. These metrics were tested slightly
differently within each tool category.

To begin with, testing the running times of the validation tools was a straightforward process
of running all the tools on a large dataset and timing the performance. Timing was done
using the Python time package to get the time before and after validation and subtracting
the start time from the finish time. The validation was done on an example dataset from
the WARA–Ops portal of metric data from the Ericsson Research data center. The dataset
contained 8,095,419 entries corresponding to about 5 hours of data center operations. The
code for the TypedFrame test can be seen in Listing 5.1 and the schema for validating the
data can be seen in Listing 5.2

1 start = time.time()
2 # Validating the dataframe stored in df
3 data = DataSchema(df)
4 end = time.time()
5

6 # Display validation time for TypedFrame
7 print(f’TypedFrame: {end - start}’)
8

Listing 5.1: Code for determining validation speed of TypedFrame

1 class MetricSchema(TypedDataFrame):
2 schema = {



18(43)

3 "hostid": int,
4 "host": str,
5 "status": int,
6 "itemid": int,
7 "name": str,
8 "units": str,
9 "item_status": int,

10 "value_type": int,
11 "clock": int,
12 "ns": int,
13 "value": str
14 }
15

Listing 5.2: TypedFrame schema for validating example data

The time complexity was measured similarly to the running time, but with increasing input
sizes. The data was of the same format as the set used for testing running times, and sampled
to select subsets of different sizes. The running times could then be plotted against the input
sizes and the graph can be compared to the theoretical time complexities of the tools. The
code for testing the time complexity of TypedFrame is shown in Listing 5.3. Note that in
the example code, more data was added to the dataset, as TypedFrame was very fast and
lower input sizes gave sporadic output times. The schema is the same as seen in Listing 5.2.

1 for i in range(1, 41):
2

3 # Select a subset of entries
4 entries = i*1000000
5 df_sample = df.sample(n=entries)
6

7 # Validate the subset
8 start = time.time()
9 data = MetricSchema(df_sample)

10 end = time.time()
11

12 # Display the running time and number of entries in the dataset
13 print(f’{entries} {end - start}’)
14

Listing 5.3: Code for testing time complexity of TypedFrame

Measuring accessibility was done less objectively than the previous two measurements. A
rough measure was determined to be the amount of input required to validate a dataset. To
begin with, a simple data format was created for a small dataset, containing a host ID, a
name, a timestamp, and a value. Then, the number of characters, words, and lines required
to create a simple validation schema for the dataset were counted and combined to give a
general accessibility score to the validation interface. Examples of the validation schema
used for each tool can be seen in Listing 5.4 to 5.9. Further, the output of the tools after
a failed validation was also considered. The failed validation messages were checked for
specificity, if the entries that caused validation to fail were specified or not.

Pydantic

1 class ValidationSchema(BaseModel):
2 hostid: int



19(43)

3 name: str
4 timestamp: datetime
5 value: float
6

Listing 5.4: Pydantic schema

Great Expectations

1 data.expect_column_values_to_be_of_type(’hostid’, ’int’)
2 data.expect_column_values_to_be_of_type(’name’, ’str’)
3 data.expect_column_values_to_be_of_type(’timestamp’, ’datetime’)
4 data.expect_column_values_to_be_of_type(’value’, ’float’)
5

Listing 5.5: Great Expectations expectation suite

TypedFrame

1 class ValidationSchema(TypedDataFrame):
2 schema = {
3 "hostid": int,
4 "name": str,
5 "timestamp": datetime64 ,
6 "value": float
7 }
8

Listing 5.6: TypedFrame schema

Marshmallow

1 class ValidationSchema(Schema):
2 hostid = fields.Integer()
3 name = fields.String()
4 timestamp = fields.DateTime()
5 value = fields.Number()
6

Listing 5.7: Marshmallow schema

Pandera

1 schema = pa.DataFrameSchema({
2 "hostid": pa.Column(int),
3 "name": pa.Column(str),
4 "timestamp": pa.Column(np.datetime64),
5 "value": pa.Column(float),
6 })
7

Listing 5.8: Pandera schema



20(43)

Table 1 Example entry of testing dataset
hostid host status itemid name units item status value type clock ns value

10700 eselda13u11s05 0 432299 interface bond0.4036:
Operational status NaN 0 3 1691020800 76226 0

JSON Schema

1 schema = {
2 "title": "Validation Schema",
3 "type": "array",
4 "items": {
5 "properties": {
6 "hostid": {
7 "type": "integer",
8 },
9 "name": {

10 "type": "string"
11 },
12 "timestamp": {
13 "type": "date -time"
14 },
15 "value": {
16 "type": "number"
17 }
18 }
19 }
20 }
21

Listing 5.9: JSON schema

Finally the tools were evaluated on flexibility. This was done by evaluating the input re-
quired to accommodate a dataset different from the schema. Similar to the accessibility
measurement, the number of words required to validate a new dataset was counted and
compared.

5.1.2 Data Profiling

Running time was once again measured by simply running the tools on a large dataset,
recording the time right before and after and subtracting the start time from the end time.
The profiling was done on a sample of the dataset in Table 1. The sample contained 300,000
entries.

A problem was discovered with SweetViz during the evaluation. No column in the dataframe
can have the name “value”. This was fixed simply by checking the names of the dataframe
columns and changing any with that name. A problem also arose when profiling datasets
of about 100,000,000x11 entries, with Ydata Profiling. The tool would crash when it was
run, presumably because of high memory usage. No simple fix for this was found, so the
eventual solution was to sample the dataset if it was too large. This would not give as accu-
rate of a representation of the data as using the whole dataset, and so should it be deemed a
waste of resources, the tool may be removed in the future.

The time complexity was analyzed by running the tools 100 times, increasing the size of
the input each time. The running times for each input were plotted against the number of



21(43)

entries each run and the graph could then be examined to determine the time complexity of
the tool. The code for the Ydata Profiling evaluation can be seen in Listing 5.10.

1

2 for i in range(1, 101):
3 entries = i*3000
4 df_sample = df.sample(n=entries)
5

6 start = time.time()
7 # Time series mode and mininal mode are turned on
8 profile = ProfileReport(df_sample , tsmode=True , sortby="clock",

minimal=True)
9 # The profiling report must be displayed in order for the majority of

calculations to be done
10 profile.to_notebook_iframe()
11 end = time.time()
12

13 print(f’{entries} {end - start}’)
14

Listing 5.10: Code for testing time complexity of Ydata Profiling

Accessibility was measured differently from the validation tools. The tools were compared
on what input each required to generate a profile of a dataset. These were compared by run-
ning the tools on a sample of the same dataset as presented in Table 1 and comparing which
tools required the least amount of input. Finally, the outputs were evaluated to determine
how easily the information in the reports could be reached and if it was explained.

Finally flexibility was measured by running different datasets through the tools. First, the
tools were run with the dataset seen in Table 1, then data was removed, leaving missing
values in multiple columns, and then the datatypes of columns were changed. Secondly, the
options for customizing the output of tools were examined. This was done through study of
the documentation and testing of features.

5.1.3 Feature Extraction

The secondary evaluation was done similarly to how it was done for the data profiling tools.
Running time was tested on a sample of the data shown in Table 1, consisting of 100,000
entries. And time complexity was evaluated the same way, by timing when the tools were
run with different inputs.

Accessibility was evaluated in the same way as it was for the profiling tools, by analyzing
the amount of input required to extract features from a dataset. And flexibility was also
evaluated similarly. First, data of different types, with different amounts of missing values
was tested on the tools to see how flexible they are regarding input. Then, the tools were
tested to determine how much the output could be customized.

5.2 Building the Pipeline

Some assumptions were made when building the system. First, in order to limit unnecessary
work, files uploaded must be in a dataframe format. This could change in the future but that
is outside the scope of this project. Second, all datasets uploaded must be time series data,



22(43)

similar methods could be used on other types of datasets, but it is outside the scope of this
project. Third, the timestamp of the time series data is provided by the user.

Building the pipeline started by considering generality and robustness. Testing was done of-
ten with different data files containing data of different shapes and sizes. A lot of safeguards
were added to catch as many potential errors as possible. Should anything go wrong it must
be explained to the user so that they can alter their input or report the error accurately.

The tools chosen after the evaluation were integrated into the system. Real integration into
the portal backend is handled by the Ericsson engineers. The implementation part of this
project handles building and testing the pipeline in the portal through the Jupyter Notebook
interface that it provides, as this lets the sample datasets already in the portal be tested on
the pipeline.

5.2.1 Pipeline Stage One

The first stage of the pipeline performs a simple analysis to determine the size of the new
datasets along with the datatypes it contains. The user is able to view these features and con-
firm that they are as expected. If they are not, the user should be able to modify whichever
aspect is incorrect, and the system should do its best to adapt to the modifications.

This stage of the pipeline was built on the validation tool selected after the secondary rank-
ing of the tools. It begins by loading the dataset into the system as a dataframe along with
letting the user specify the timestamp column in the dataset. The dataframe is then displayed
to the user before it is passed through a for loop that checks the types of each column and
generates a file containing a validation schema of the data. The user may then modify the
file if needed before the dataset is finally validated using the generated schema in the file.
Tryexcept statements were added to stop empty datasets, and datasets of the wrong type
from being uploaded.

5.2.2 Pipeline Stage Two

The second pipeline stage was very straightforward to construct as it consists entirely of the
data profiling tools that were chosen. The dataframe that was validated in the previous step
was passed to the data profiling tools that created and displayed profiles of the data. The
profiles were then saved as HTML files that the user could view.

Depending on the size of the dataset, the profiling may take some time, so the third stage of
the pipeline can start before the second has finished, as it is entirely independent. Once the
second stage was finished, the data profiles that were generated were displayed for the user,
and the pipeline moved to the final stage.

5.2.3 Pipeline Stage Three

The third stage of the pipeline provides a more in–depth analysis of the data and puts a
label on the dataset based on the automatic analysis it performs. In this stage, the analytical
metadata is created.

Before the analysis was done, the data was cleaned, by removing missing values. First, if
any column contained no values, it was removed. This threshold could be changed by the



23(43)

user if they, for example, would want to remove columns that are missing 80% of values. If
any columns were still missing values, they were interpolated using the Pandas interpolation
feature. Missing values were filled in using surrounding values. After removing missing
values, the data was encoded to enable analysis by the chosen tools. Encoding was done
using the Sklearn label encoder in order to convert any non–numerical values to numbers.
Label encoding was chosen over one hot encoding, as, if the data is large, with many unique
categories, it may take a lot of extra space to store the data and extra time to process.

Once the data was filled in and encoded, depending on the size of the dataset, it was sampled.
Because some of the analysis can be very slow and memory intensive, if a dataset had more
than 20,000 entries, a random sample of that many entries was selected for analysis. The
data, either the sample or entire dataset depending on size, was then passed to the tools that
calculated a multitude of features of the dataset.

For further analysis, after the feature extraction tools were run, the data was reduced. Be-
cause the pipeline processes large datasets, it can be assumed that much of the data passing
through the pipeline is high dimensional. Reducing the dimensionality of the data allows for
easier visualization and improved performance. First, the data was reduced with principal
component analysis (PCA) using Sklearns PCA function. Principal components explaining
80% of the variance in the data were kept as that would explain most of the variance while
hopefully removing the least important values. The remaining data was then embedded into
three dimensions using t–distributed stochastic neighbor embedding (tSNE) so it could be
visualized. Both PCA and tSNE were selected to reduce the dataset as much as possible
while trying to preserve the underlying patterns in the original data and making the data
viewable in two or three dimensions.

The t–SNE embedding of the data is then presented in a three–dimensional graph for the
user to explore. In order to find groupings, the data is then clustered using Sklearns k–
means clustering algorithm. The clustering is run 10 times with k values increasing from
1 to 10, and the inertia of each clustering is used to construct an elbow graph. The graph
is presented to the user along with an explanation so that they may select an appropriate
k value either based on the graph or on domain knowledge they possess. The data is then
presented again in a three–dimensional graph, this time showing the clusters. Finally, the
distances from the data points to their cluster centers are calculated, and the data is plotted
again, with increasing size the further from the cluster centers, in order to visualize the
spread of each cluster. During this process, the silhouette score and within–cluster sum of
squares are calculated and saved.

In order to show the user what data may have contributed to each cluster, a random forest is
used. It is trained on the sample data that was used to create the clustering, and the labels of
the clusters to find similarities. The importance of each column to the clustering is plotted
to give the user an idea of what columns contribute the most to the clustering. Finally, the
correlation is calculated, and the correlation matrix for the data is shown using the Pandas
correlation function. The absolute mean value of the correlation and the mean–variance of
the dataset are both calculated and saved.

Once all the features have been calculated and visualized, the statistical metadata is passed
to the labeling model, which provides labels that give a general overview of the dataset.
Specifically, it describes the spread, correlation, and clustering of the data in simple terms.
The spread is determined based on the variance of the dataset, and is expressed as “High
variance”, “Medium variance”, or “Low variance”. The correlation is described by the ab-



24(43)

solute mean of the correlation matrix of the data. By removing the trivial diagonal and
summing the absolute values of the top half of the correlation matrix, a metric for the corre-
lation across the dataset is determined. The correlation label can be: “Strong correlation”,
“Reasonable correlation”, or “Weak correlation”. Clustering is determined by two values:
the silhouette score and the within–cluster sum of squares (WCSS). The silhouette score
determines the strength of the clustering. It can be “Strong clustering”, “Reasonable clus-
tering”, “Weak clustering”, or “Bad clustering”. Finally, the quality of the clusters is deter-
mined by WCSS. The value is divided by the size of the dataset, to scale it down and make
the differences clearer. The cluster quality can be “Tight clusters”, “Regular clusters”, or
“Scattered clusters”.

Initially, the model was created using a Pytorch neural network, however, despite extensive
testing and tuning, the model never achieved an accuracy above 60%. Instead, a random
forest classifier from Sklearn was used. Training data was obtained by generating randomly
clustered data, calculating the necessary features, and hand labeling it. Labeling was first
done by observing, visualizing the data, and applying an appropriate label. When a num-
ber of labels were created, more data was generated and labels were applied based on the
previous labels. The number of estimators and size of training data was tweaked until an ac-
curacy of 99% was reached. Such high accuracy could imply overfitting. However, because
the output data was relatively small, the results were satisfactory.



25(43)

6 Results

As described in Section 4 the tools were divided into three categories, validation, profiling
and feature extraction, and they were evaluated within these categories.

6.1 Evaluation of Validation Tools

The initial ranking was done with regards to the metrics listed in Section 4.1. They were
available resources, the focus of the tools, as well as the validation–specific metric of fea-
tures provided for validation beyond type checking.

The resources were judged on the size of the community around the tool. A rough measure
of the size of the community was created by observing the number of people who have
starred the tool, and watch the tool on GitHub. Using this to show the size of the community
surrounding the tool, serves as an indicator of the size of the potential pool of resources
behind the tool. The goals and features were determined from the descriptions of the tools,
as presented in Section 3.9. The tools were ranked on each metric individually before each
ranking was combined, giving the resulting initial ranking in Table 2.

TypedFrame has a very small community compared to the other tools. The stated goal
of the tool is not entirely in line with the purpose it would serve in the pipeline either.
Marshmallow has an explicitly different focus than the other tools, and JSON Schema serves
a slightly different purpose as, at the moment, incoming data is not in a JSON format.

Pydantic and Great Expectations have large communities and a large number of resources to
draw from when learning about them. However, while Great Expectations is mostly in line
with the needs of the pipeline, Pydantic is not entirely. Both tools provide a multitude of
extra features, specifically, Great Expectations provides methods for integrating validation
into data pipelines, which is of interest.

Pandera does not have as much interest as most of the other tools, however its stated focus
falls well in line with what it is needed for. Pandora also provides a large number of features
and a large number of datatypes for type checking and type conversion. Specifically, it
provides features for pipeline integration and deeper validation along the lines of Great
Expectations.

For the secondary ranking, the running time, time complexity, accessibility, and flexibility
were examined. To test the validation speed of the six validation tools, they were run on
a dataset containing 8,095,419x11 entries of operational data from the Ericsson Research
data center. An example entry can be seen in Table 1. An example of a TypedFrame schema
for the dataset is displayed in Listing 5.2. The example shows the expected datatypes for
each column of the dataset.

To get a fairer measurement of running time, each tool was run 10 times, and the average



26(43)

Table 2 Initial ranking of validation tools

Rank Tool Community Focus Extra features

1 Great Expectations 9582
Data processing

pipeline validation
for known datasets

Many

2 Pydantic 19014
Low level data
validation for

Python programming
Many

3 Pandera 3048
Data processing

pipeline validation
Many

4 JSON Schema 4511
Validation of
JSON objects

Many

5 Marshmallow 6980
Serialization and

deserialization of data
Many

6 TypedFrame 94
Validation of

Dataframe objects
Few

Table 3 Speed and accessibility test results

Time (s) Accessibility
Pydantic 68.1 148
Marshmallow 242.3 306
Pandera 8.3 310
GX 5.3 647
TypedFrame 0.00057 173
JSON Schema 442.5 401

time was calculated. To gain a somewhat concrete measure of accessibility, the number of
characters, words, and lines in a tool schema were counted and summed to give an accessi-
bility score. This was done by taking only the names of the columns and the datatypes to
remove the noise from class names and descriptions. This means that the accessibility score
for the schema in Listing 5.2 was calculated without line 1. Both the time and accessibility
results are displayed in Table 3.

Testing of the time complexity of the tools was done similarly to the running time tests.
Each tool was run with increasingly larger datasets, and the times were recorded. The
resulting graphs are shown in Figures 2.

To evaluate the flexibility of the tools, the syntax for adding additional columns was ex-
amined and the number of additional words required for making a column optional was
counted. Results for each tool can be seen in Table 4. Any additional columns must be
optional so as not to invalidate the previous data format.

Based on the initial ranking and the results of the tests, the tools were ranked a second time.
The results of the second ranking can be seen in Table 5.



27(43)

Figure 2: The running times of the data validation tools with increasing input size.

Table 4 The amount of extra input required to create an optional column to a schema

Tool Input required to make column optional
Pydantic 1
Marshmallow 2
Pandera 2
GX 0
TypedFrame 1
JSON Schema 0

Table 5 Second ranking of validation tools

Rank Tool
1 Pandera
2 Pydantic
3 Great Expectations
4 TypedFrame
5 JSON Schema
6 Marshmallow



28(43)

Table 6 Initial ranking of profiling tools

Rank Tool Community Focus Features

1 Ydata Profiling 12150 Easy data profiling
Data summarization

values

2 SweetViz 2892 Easy data profiling
Data summarization

values

3 Dython 405 Easy data analysis
Categorical and

numerical associations

Table 7 Running times of data profiling tools on a dataset with 300,000 entries.

Time (s)
SweetViz 11.9
Dython 14.5
Ydata Profiling 99.5

6.2 Data Profiling Tools

The initial ranking of the data profiling tools was done partly on the general metrics of
community, and stated focus of the tool, as well as the specific metric of extracted data.
Table 6 shows the results of this ranking.

Dython is the smallest tool, and so predictably has the smallest community surrounding it.
The focus of the tool is data analysis in an accessible manner which is an important part of
the pipeline. Its primary function is calculating the associations between the variables in the
dataset using, Pearson correlation, Correlation ratio, Cramérs V, and the Uncertainty coef-
ficient, as described in Section 3.9. It also provides an interface for calculating a multitude
of features for exploring machine learning models.

Ydata Profiling and SweetViz are relatively similar in function. The focus of both tools
is specifically generating a comprehensive data profile that can be viewed in the form of
a report. Ydata Profiling had by far the largest community of them, but functionally they
provide very similar features.

For the secondary ranking, the running time and time complexity tests were performed
the same as for the validation tools. The results can be seen in Figure 3. For the tests
Ydata Profiling was run on datasets with up to 300,000x11 entries, over 100 runs. It was
run in time series mode to represent its use in the system. It was also run in minimal
mode, disabling the associations it calculates, as without it, profiling large datasets would
sometimes cause memory issues. Time complexity analysis of SweetViz and Dython was
also done using a set of 300,000x11 entries over 100 runs. The Dython tests were run on the
Association function of the tool, as that would be the main one used if the tool were chosen.
Running time tests were performed by running the tools on a dataset with 300,000x11
entries. The results are presented in Table 7.

Accessibility evaluation was done by analyzing what information was required to create a
profile of the data. The comparison between the input of the tools can be seen in Listing 6.1.
Example outputs of Ydata Profiling, SweetViz, and Dython can be seen in Figures 4 to 9.
Both Ydata Profiling and SweetViz have similar presentations with simple layouts that are



29(43)

Figure 3: Running times of data profiling tools with increasing input size.

highly readable. Each column has its statistics presented individually where each calculated
statistic is named. Ydata Profiling provides labels for certain patterns it can observe in a
column. However, the labels are not explained in the profile and require the user to read the
documentation for explanation. Dython has lower accessibility as it presents a correlation
matrix that it does not explain. Different methods are used depending on if the column
contains continuous or categorical values, but it is not explained in the interface, and also
requires the documentation to understand.

1 # Create and display profile report using Ydata Profiling
2 profile = ProfileReport(df, tsmode=True , sortby="timestamp")
3 profile.to_notebook_iframe()
4

5 # Create and display profile report using SweetViz
6 report = sv.analyze(df_validated)
7 report.show_notebook()
8

9 # Create and display association graph using Dython
10 associations(df_sample)
11

Listing 6.1: Code for running and displaying profiles using Ydata Profiling, SweetViz, and
Dython

Finally, the flexibility testing was done using the same datasets previously mentioned, with
modifications. It shows that all tools could handle missing values. Ydata Profiling was
the only tool not to crash when presented with unsupported datatypes. Instead, it marks
the column as unsupported. Ydata Profiling and SweetViz both have highly customizable
output. Ydata Profiling lets users add configurations to the input when creating the profile,
while SweetViz lets users provide inputs to the config file it uses to create a profile. Both
let users remove or keep whichever statistics they wish. Dython has the least customization,
simply by having a less varied analysis. Users may choose which functions to use, however,
for a good overview of the data, the association function is the only real option. Using the
initial ranking and the results shown in this section, the second ranking was performed. The



30(43)

Figure 4: Example of Ydata Profiling profile for “value” column from data as shown in
Table 1.

Figure 5: Example of data alerts given for each column by Ydata Profiling, for data shown
in Table 1.

Figure 6: Example of collapsed profile of “value” column for data shown in Table 1, given
by SweetViz.



31(43)

Figure 7: Example of extended profile of “value” column for data shown in Table 1, given
by SweetViz.

Figure 8: Example of association graph for data shown in Table 1, given by SweetViz.



32(43)

Figure 9: Example of association graph for data shown in Table 1, given by Dython.

Table 8 Second ranking of data profiling tools

Rank Tool
1 SweetViz
2 Ydata Profiling
3 Dython

resulting ranking is shown in Table 8.

6.3 Feature Extraction Tools

Just as with validation and profiling, the initial ranking was done on available resources and
focus of the tool. The ranking also took into account the specific features extracted. The
results of the ranking are presented in Table 9.

Stumpy has a somewhat large community and is well–supported. However, the tool’s focus

Table 9 Initial ranking of feature extraction tools

Rank Tool Community Focus Features

1 Tsfresh 8268
Easy extraction of
time series features

Calculates 77 general
statistical features

2 Tsfel 880
Easy extraction of
time series features

Calculates 68 general
statistical features

3 Stumpy 3058
Calculation of

the matrix profile
Calculates the matrix profile



33(43)

Figure 10: Running times of feature extraction tools with increasing input size plotted on
a logarithmic scale.

Table 10 Running times of feature extraction tools on a dataset with 100,000 en-
tries.

Time (s)
Stumpy 2.0
Tsfel 16.1
Tsfresh 306.0

and the specific features it calculates are very specific. Compared to Tsfresh and Tsfel, it
does not provide a wide range of features, thus placing it low in the initial ranking.

Tsfresh and Tsfel are very similar in terms of features extracted and focus. However, Tsfresh
has a much larger community and more resources available. Both focus on analyzing time
series data and calculating features that may be relevant for machine learning models to
understand the data.

Time complexity and running time were analyzed similarly to the validation and profiling
tools. The results can be seen in Figure 10, presented in a logarithmic plot for easier com-
parisons. Testing of Stumpy was done using a dataset of 300,000x11 entries, on one column
of numerical data to represent a data column in a dataset. It was done with a window size of
300. Tsfresh and Tsfel were evaluated with datasets containing 50,000 and 500,000 entries,
respectively. The running time tests were done on a dataset of size 300,000x11.

Accessibility was evaluated similarly to the data profiling tools by analyzing the amount of
input beyond the dataset required to run the tool. Examples of this can be seen in Listing 6.2.
A rough metric for ease of use can be observed by evaluating the amount of required input.

1 # Extract features from df using Tsfresh
2 extract_features(df, column_id=id, column_sort=timestamp)
3

4 # Extract features from df using Tsfel
5 cfg = tsfel.get_features_by_domain()



34(43)

Table 11 Results of flexibility testing on Tsfresh, Tsfel, and Stumpy

Handles Tsfresh Tsfel Stumpy
Missing values No No Yes
Non–numeric values No No No

Table 12 Second ranking of feature extraction tools

Rank Tool
1 Tsfel
2 Stumpy
3 Tsfresh

6 tsfel.time_series_features_extractor(cfg, df)
7

8 # Calculate matrix profile from df "values" column using Stumpy
9 windowsize = 24

10 stumpy.stump(df[’value’].values , windowsize)
11

Listing 6.2: Code for calculating features using Tsfresh, Tsfel and Stumpy

The flexibility evaluation was done by testing input data with missing values and non–
numerical data. It revealed that none of the tools are very flexible regarding input. They
all require the input data to be numeric without missing values. Any unsupported datatypes
also cause the tools to give an error. Changing the data shape is not a problem. Table 11
shows the results of the tests. Tsfresh lets users customize precisely which features they
want to extract by adding a dictionary, specifying the desired ones. Tsfresh does as well by
letting users create a dictionary of features they wish to calculate.

All results contributed to the final ranking of the feature extraction tools, which can be seen
in Table 12.

6.4 System Evaluation

Testing the system’s running time was done the same way as the other tools. Input size
started at 25,000 entries, in increments of 25,000 up to 950,000 entries, as memory prob-
lems with Ydata Profiling prevented the size from increasing further. The results can be
seen in Figure 11. The running time of the system, on input data with 900,000x11 entries,
was: 1029.5s



35(43)

Figure 11: The running time of the system for N entries.

Accessibility was tested by examining what input is required and what explanations were
provided for the output. Beyond the dataset, the system requires the dataset’s timestamp
column as input. Further on, the system also provides the option of selecting a k value for
clustering. All outputs are explained by the system. Finally, flexibility was tested using
datasets with missing values, as well as empty datasets and datasets with columns added
and removed, all of which the system can handle to different extents. Updating datasets
required some further input from the user to add optional columns. This evaluation ensures
that the system is robust and reliable. Together, these results provide points of comparison
with the top ranked tools, shown in Tables 5, 8, and 12.



36(43)

7 Discussion

For the first aim of the research question, the tools were studied and evaluated solely on
the information provided before testing. This created the initial ranking based on what each
tool could potentially provide to the system. Categorizing the tools was relatively simple.
The validation tools were easy to identify and group together as they all serve a similar
purpose. For the data profiling tools, Ydata Profiling and SweetViz were very obviously
similar. However, Dython could have theoretically been placed in the feature extraction
category, but because it functions by providing visualizations of a dataset, it was judged
as falling toward the data profiling category. The feature extraction tools were also quite
simple to categorize. Stumpy is quite different from Tsfresh and Tsfel, however it can still
be categorized with them as it extracts a feature of the dataset, namely the matrix profile.

One potential problem for evaluating the tools with metrics for evaluating metadata ex-
traction tools, is the fact that metadata tools vary a lot. The specific metrics referenced in
Section 3.2 were specifically used for metadata generation tools, which are more compre-
hensive and usually more focused on a specific domain than any of the tools analyzed in
this project. However, they provided a good basis for identifying evaluation metrics for the
tools used. Running time and time complexity give a good idea of the speed of the tools.
Accessibility is referenced in Section 3.2 and is important as it lets new and unfamiliar users
access and use the tools effectively as quickly as possible. Finally, flexibility is an important
metric as datasets continue to grow. Inevitably, data format, type, and shape change, and
tools should be able to manage that in order to be useful.

7.1 Designing the Data Processing System

Regarding aim two of the research question, the design of the data processing system was
based entirely on the needs of WARA–Ops. For the final labeling of the data, creativity is the
only factor that limits what metrics can be selected. It was determined that a good start for
the system should be a summary of the dataset. The basic summarization metrics selected
were determined to be, variance and correlation based on the explanations in Section 3.5.
To examine underlying patterns, clustering of the dataset using k–means clustering was
determined to be appropriate for analysis. This provides information on the spread of the
data, along with possibly identifying underlying patterns.

Training the labeling model was relatively simple. The input has only four values, and
because the training data was labeled somewhat rigidly, not much tuning was needed to
achieve a high degree of accuracy. Presumably, the model is somewhat over tuned. How-
ever, the immediate fix for this is better training data. The training data used was labeled by
hand, so generating an appropriate amount of it required some amount of rigidity in accor-
dance with the input values. Higher quality training data is likely more ambiguous about
which labels are applied to which values.



37(43)

7.2 Results of Tool Evaluations

Beginning with the validation results, they are as expected. Because validation tools run
over the input data, checking the type of each one, they are expected to exhibit running
times linearly increasing with input size. This behavior is present in the results. While it
is good that they meet expectations, it does not provide good grounds for the secondary
ranking, as all tools are the same. The running times, on the other hand, provide better
grounds for ranking. The running time results are also expected. TypedFrame is simply a
wrapper over a dataframe, that provides very few features, and so has very little overhead,
making it very fast. Great Expectations is also designed to process large datasets so it can
be expected to be partly optimized for speed. Pandora, while being somewhat focused on
larger datasets, is also used for lower–level type–checking in programming, meaning it may
be less focused on performance. Pydantic, is also a lower level tool and so is not focused on
execution speed. Pydantic, along with Marshmallow and JSON Schema, does not validate
dataframe objects directly either. Because the input for the speed tests was converted from
a dataframe, it is possible that the structure of the converted dataframe may not be optimal
for validation.

The accessibility and flexibility tests are rougher than the time measurements but provide
a good basis for comparing the tools’ interfaces. It becomes clearer when comparing the
syntax of the tools directly. TypedFrame, Pandas, Pydantic, and Marshmallow all have quite
clear syntax that show the name of the column along with the datatype. However, Pandera
and Marshmallow require some more input that may be clarifying to someone familiar with
the tool but may be confusing to a new user. JSON Schema has a quite clear syntax that is
accessible and flexible but can grow very quickly. For large datasets, writing and checking a
large JSON schema could become cumbersome. Great Expectations syntax shows more of
what the focus of the tool is. Because it uses specific expectations, it is assumed that the data
format is known, and simple type–checking is not a focus. Based on these results, together
with the initial ranking, it is clear that Pandera is the most appropriate. Considering that
it can be used with the syntax of Pydantic, it is more accessible than the other tools while
still providing effective validation with a multitude of features that can be added, should the
need to be.

The time complexity graphs of the profiling tools were somewhat unexpected. SweetViz
calculates the association graph, that is, O(n2) at worst, however the SweetViz graph shows
a relatively linear increase. This is most likely the result of the dataset used for testing.
A dataset with larger dimensions would most likely incur an increase in running times.
This is also visible in the Dython graph, as it shows a linear increase despite calculating
the associations of the dataset. Ydata Profiling, on the other hand, was run in minimal
mode, which stops it from calculating the associations between columns. However, its
graph exhibits O(n2) performance, as can be seen by the dotted line in the graph. The
increased running times may come from time series specific calculations, as time series
mode was enabled. The running times of the tools were not entirely expected. SweetViz
and Dython both create an association graph, but SweetViz also constructs a profile report.
Despite this, it is faster than Dython.

All the tools were quite flexible, as part of their purpose was to analyze new data. They
could all handle data with missing values, however, while Dython and SweetViz gave errors
when encountering an unsupported datatype, Ydata Profiling could still construct the profile
while marking the column as unsupported. The output of SweetViz and Ydata Profiling



38(43)

was also customizable to a high degree. Specific features and columns can be blocked
from analysis in both tools. The association graphs could also be enabled and disabled
in both. Finally, the tools were very accessible. The only input required for all of them
is the dataset itself, but when run in time series mode, Ydata Profiling also requires the
timestamp of the dataset. As can be seen in Figure 8, SweetViz provides the association
graph for the dataset, with an explanation of it. Figure 4 shows the labels put on the data
by Ydata Profiling. While insightful, the labels are not explained in the report, which may
cause problems for more ambiguous labels such as “Skewness” and “Imbalance” where
the thresholds for determining the label are not given. Using these results, the secondary
ranking was determined, however, because Ericsson has the resources, both SweetViz and
Ydata Profiling can be run in parallel with the rest of the system, so both tools were chosen.

Finally, the feature extraction tool evaluation was interesting. Tsfel and Tsfresh extract very
similar features. However, Tsfresh uses the Id columns of the dataset and calculates features
for every time series in the dataset, which is reflected in its longer running times. This can
partly explain the time complexity analysis, as the running time increases when more IDs
are added to the dataset. Stumpy has a theoretical time complexity of O(n2). However, in
Figure 10 it exhibits a much steeper curve, closer to O(n4). This may have been caused by
a deprecated package in the portal that slows down the tool. No simple solution to this was
found. However, even going by the normal complexity of O(n2), Stumpy still ranks below
Tsfel.

The only feature extraction tool that is as accessible as the profiling tools is Tsfel. As shown
in Listing 6.2, it requires the dataset and a config file as input. However the config file may
left as is and do not need to be handled by the user, although should the user wish, it may be
modified to extract specific features. Tsfresh requires the ID column of the dataset, requiring
further input from the user, and Stumpy requires some domain knowledge and extra input to
select an appropriate window size. Flexibility results were expected. Both Tsfel and Tsfresh
require clean, numerical data to perform their tasks and Stumpy, while requiring numeric
values, can still perform its tasks with missing values. Based on these results, the optimal
tool for integration is Tsfel. However, because Stumpy has such a specific focus, it may be
a valuable tool to use as well.

7.3 System Evaluation

Because the system consists of the tools running in sequence, the time complexity of the
system can be assumed to be the sum of the complexities of the tools within the system.
The lower order values can then be disregarded meaning it becomes the time complexity
of the highest order of the tools. This is reflected in the results shown in Figure 11. The
analysis of Ydata Profiling showed a complexity curve of n2, which is also what is shown in
the running times of the system itself. One difference in the finished system is that the data
profiling tools can be run in parallel with the rest of the system. This speeds up the system
as a whole. The time complexity of tSNE is also O(n2), however, it is run on a sample of
the dataset to reduce running time and memory usage, which means the input size to the
algorithm can be controlled, and thus has less of an impact on the running time.

The accessibility and flexibility evaluation results are also expected as the system is de-
signed specifically to be accessible and flexible. While there are several opportunities for



39(43)

users to provide input, the only required input is the dataset itself and the timestamp column
of the dataset. This is in line with the rest of the tools analyzed. Any problematic datasets
entered are processed and analyzed to the extent possible, and most errors that occur are
explained by the system.



40(43)

8 Conclusion

This thesis has examined different data management tools and evaluated them on the basis
of extracting statistical data and metadata from an unknown dataset. The tools were cate-
gorized and ranked based on what value they could provide to a data analysis system. The
most suitable tools were chosen and integrated into a data analysis pipeline for large oper-
ational datasets, and the whole system was compared to the initial sets of tools to examine
what value it added. The metrics for evaluating data analysis tools were examined. The
best metrics were determined to be accessibility, letting users easily use the tool effectively.
Flexibility, to ensure that the tools do not break under heavy usage as much of the data
may be very variable in size, shape, and type. Running time can give a rough measure of
comparison between tools, and time complexity is important for determining if a tool can
be used effectively on very large datasets.

The aims and objectives stated in the introduction have been achieved. The tools were
studied and ranked according to aim 1. The rankings can be seen in Section 6. Then, a
data processing system was designed with the help of Ericsson Research, the tools were
evaluated again on practical metrics, and the most appropriate tools for the system were
selected and implemented. The construction of the system using the selected tools achieved
the objectives of Aim 2, and finally, the system was evaluated on the same practical metrics
as the individual tools as stated in Aim 3. The tools selected in the end were Pandera
for validation as it is very accessible and flexible while providing relatively good speed.
SweetViz and Ydata Profiling were chosen for data profiling as they provide accessibility
and flexibility. They are slow when running on large datasets, however, if they can be run in
parallel with the rest of the system, they can provide informative reports on the data together
with the rest of the analysis the system outputs.

8.1 Reflection

The project was challenging but interesting as it is a field I do not have much real–world ex-
perience in. I have studied artificial intelligence and cloud systems, but I have never worked
with data processing tools and operational datasets of the scale present in this project. This
project has reinforced the idea that a clear goal is the most important criterion for success in
a large project such as this one. At the start, the goals felt somewhat flexible and unfocused
which made it difficult to focus the work. They became clearer further on in the project,
which then made the work much more effective.



41(43)

8.2 Future Work

Data analysis and data mining are gigantic areas and will most likely always have room
for future research. Firstly this thesis does not even come close to a comprehensive list of
tools. All categories: validation, profiling, and feature extraction, have a large number of
tools available that may be more appropriate than any of the tools analyzed here, depending
on the use case. It is also possible to be much more specific in each category. The metrics
used for evaluation in this thesis provide a good basis for implementing tools into a general
system, however, much work can be put into examining the tools in more specific contexts.

There is also much more to be done with the dataset summarization metrics. The metrics
extracted from the data by the pipeline provide a simple overview of the data and puts a
broad label on it. But there is a lot of room, both for more metrics and a deeper exploration
of the metrics used. The autocorrelation, using the Pandas method is presented as is for the
dataset, however, it could be more useful if the data was further processed, for example, by
testing for the optimal timestep to use, the graph may provide more useful for meaningful
analysis.

Most of the datasets in the portal are quite similar in that they are very scattered, with
no immediately recognizable patterns. It would be interesting to base the evaluations on
a more heterogeneous collection of datasets. This could provide opportunities for further
exploration of the data, as well as give better grounds for the final label put to the data. As
it is now it is a good feature for a data analysis system, however as the labels are based
on the values calculated from currently existing systems, they might become less accurate
on different datasets. The labeling also has room for more. Text may be added to describe
further the spread of the data, things such as how skewed it is, or if there are many outliers.
This would provide a much deeper view of a given dataset.



42(43)

References

[1] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series cluster-
ing – a decade review. Information Systems, 53:16–38, 2015.

[2] TD Ameritrade. Stumpy. https://stumpy.readthedocs.io/en/latest/, August
2023.

[3] Julian Berman. Json schema. https://python-jsonschema.readthedocs.io/e
n/stable/, January 2024.

[4] Francois Bertrand. Sweetviz. https://github.com/fbdesignpro/sweetviz,
November 2023.

[5] Great Expectations Core. Great expectations. https://greatexpectations.io/,
March 2024.

[6] A.S. Gillis, C. Stedman, and A. Hughes. Data Mining. https://www.techtarget
.com/searchbusinessanalytics/definition/data-mining, February 2024.
Accessed 27-02-2024.

[7] Blue Yonder GmbH. tsfresh. https://tsfresh.readthedocs.io/en/latest/,
January 2024.

[8] N Gogtay and U Thatte. Principles of correlation analysis. The Journal of the Associ-
ation of Physicians of India, 65:78–81, 03 2017.

[9] Jane Greenberg. Metadata extraction and harvesting. Journal of Internet Cataloging,
6(4):59–82, 2004.

[10] Hazal Gültekin. What is silhouette score? https://medium.com/@hazallgultek
in/what-is-silhouette-score-f428fb39bf9a, September 2023.

[11] Ajay Kulkarni, Ryan Booz, and Attila Toth. What is time-series data? definitions &
examples. https://www.timescale.com/blog/time-series-data/, Jan 2024.
Accessed: 2024-02-26.

[12] Education Ecosystem (LEDU). Understanding k-means clustering in machine learn-
ing. https://towardsdatascience.com/understanding-k-means-clusterin
g-in-machine-learning-6a6e67336aa1, September 2018.

[13] Steven Loria, Jérôme Lafréchoux, and Jared Deckard. Marshmallow. https://mars
hmallow.readthedocs.io/en/stable/index.html, March 2024.

[14] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. Deepeye: Towards automatic
data visualization. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pages 101–112, 2018.

https://stumpy.readthedocs.io/en/latest/
https://python-jsonschema.readthedocs.io/en/stable/
https://python-jsonschema.readthedocs.io/en/stable/
https://github.com/fbdesignpro/sweetviz
https://greatexpectations.io/
https://www.techtarget.com/searchbusinessanalytics/definition/data-mining
https://www.techtarget.com/searchbusinessanalytics/definition/data-mining
https://tsfresh.readthedocs.io/en/latest/
https://medium.com/@hazallgultekin/what-is-silhouette-score-f428fb39bf9a
https://medium.com/@hazallgultekin/what-is-silhouette-score-f428fb39bf9a
https://www.timescale.com/blog/time-series-data/
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://marshmallow.readthedocs.io/en/stable/index.html
https://marshmallow.readthedocs.io/en/stable/index.html


43(43)

[15] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and M Brandon West-
over. Exact discovery of time series motifs. volume 2009, pages 473–484, 04 2009.

[16] Shaun M. Oborn and D. Garlick. Effective visualization tools for large data sets. 2178,
1994.

[17] Xavier Ochoa and Erik Duval. Automatic evaluation of metadata quality in digital
libraries. Int. J. on Digital Libraries, 10:67–91, 08 2009.

[18] Oracle. What is big data?, 2024. https://www.oracle.com/big-data/what-i
s-big-data/.

[19] The pandas development team. pandas-dev/pandas: Pandas, 2024.

[20] Jung-ran Park and Andrew Brenza. Evaluation of semi-automatic metadata generation
tools: A survey of the current state of the art. Information Technology and Libraries,
34:22–42, 09 2015.

[21] Pydantic. Pydantic. https://docs.pydantic.dev/latest/, April 2024.

[22] Associação Fraunhofer Portugal Research. Tsfel. https://tsfel.readthedocs.io
/en/latest/, March 2024.

[23] Alexander Reshytko. Typedframe. https://typedframe.readthedocs.io/en/l
atest/, January 2023.

[24] Jenn Riley. Understanding Metadata. National Information Standards Organization
(U.S.), 2017.

[25] Purvi Saraiya, Chris North, and K. Duca. An insight-based methodology for evaluat-
ing bioinformatics visualizations. IEEE Transactions on Visualization and Computer
Graphics, 11:443–456, 2005.

[26] JSON Schema. Json schema. https://json-schema.org, 2024.

[27] Union. Pandera. https://pandera.readthedocs.io/en/stable/, March 2024.

[28] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. Voyager: Exploratory analysis via faceted browsing of visual-
ization recommendations. IEEE transactions on visualization and computer graphics,
22, 09 2015.

[29] YData. Ydata profiling. https://docs.profiling.ydata.ai/latest/, March
2024.

[30] Shaked Zychlinski. Dython. http://shakedzy.xyz/dython/, February 2024.

[31] Slavko Žitnik and Erik Štrumbelj. Introduction to data science. https://fri-datas
cience.github.io/course_ids/handbook/, October 2022.

https://www.oracle.com/big-data/what-is-big-data/
https://www.oracle.com/big-data/what-is-big-data/
https://docs.pydantic.dev/latest/
https://tsfel.readthedocs.io/en/latest/
https://tsfel.readthedocs.io/en/latest/
https://typedframe.readthedocs.io/en/latest/
https://typedframe.readthedocs.io/en/latest/
https://json-schema.org
https://pandera.readthedocs.io/en/stable/
https://docs.profiling.ydata.ai/latest/
http://shakedzy.xyz/dython/
https://fri-datascience.github.io/course_ids/handbook/
https://fri-datascience.github.io/course_ids/handbook/

	Introduction
	Related Work
	Background
	Big Data
	Metadata
	Data Mining
	Time Series Data
	Time Series Motifs

	Summarizing Data
	Correlation Analysis
	Data Clustering
	Tools
	Pandas
	SciKit–Learn

	Tools for Evaluation
	Validation
	Data Profiling
	Feature Extraction


	Solution Design
	Selecting Tools
	Initial Evaluation
	Secondary Evaluation

	Pipeline Design
	Metrics for Analysis
	Data Summary
	Underlying Patterns

	Evaluation of Completed System

	Implementation
	Tool Evaluation
	Data Validation
	Data Profiling
	Feature Extraction

	Building the Pipeline
	Pipeline Stage One
	Pipeline Stage Two
	Pipeline Stage Three


	Results
	Evaluation of Validation Tools
	Data Profiling Tools
	Feature Extraction Tools
	System Evaluation

	Discussion
	Designing the Data Processing System
	Results of Tool Evaluations
	System Evaluation

	Conclusion
	Reflection
	Future Work

	References

